EEG-based Drowsiness Detection for Safe Driving Using Chaotic Features and Statistical Tests

نویسندگان

  • Zahra Mardi
  • Seyedeh Naghmeh Miri Ashtiani
  • Mohammad Mikaili
چکیده

Electro encephalography (EEG) is one of the most reliable sources to detect sleep onset while driving. In this study, we have tried to demonstrate that sleepiness and alertness signals are separable with an appropriate margin by extracting suitable features. So, first of all, we have recorded EEG signals from 10 volunteers. They were obliged to avoid sleeping for about 20 hours before the test. We recorded the signals while subjects did a virtual driving game. They tried to pass some barriers that were shown on monitor. Process of recording was ended after 45 minutes. Then, after preprocessing of recorded signals, we labeled them by drowsiness and alertness by using times associated with pass times of the barriers or crash times to them. Then, we extracted some chaotic features (include Higuchi's fractal dimension and Petrosian's fractal dimension) and logarithm of energy of signal. By applying the two-tailed t-test, we have shown that these features can create 95% significance level of difference between drowsiness and alertness in each EEG channels. Ability of each feature has been evaluated by artificial neural network and accuracy of classification with all features was about 83.3% and this accuracy has been obtained without performing any optimization process on classifier.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

طراحی و ساخت یک سیستم تشخیص خواب آلودگی راننده مبتنی بر پردازش‌گر سیگنال TMS320C5509A

Every year, many people lose their lives in road traffic accidents while driving vehicles throughout the world. Providing secure driving conditions highly reduces road traffic accidents and their associated death rates. Fatigue and drowsiness are two major causes of death in these accidents; therefore, early detection of driver drowsiness can greatly reduce such accidents. Results of NTSB inves...

متن کامل

A Hybrid Approach to Detect Driver Drowsiness Utilizing Physiological Signals to Improve System Performance and Wearability

Driver drowsiness is a major cause of fatal accidents, injury, and property damage, and has become an area of substantial research attention in recent years. The present study proposes a method to detect drowsiness in drivers which integrates features of electrocardiography (ECG) and electroencephalography (EEG) to improve detection performance. The study measures differences between the alert ...

متن کامل

Real Time Driver’s Drowsiness Detection by Processing the EEG Signals Stimulated with External Flickering Light

The objective of this study is development of driver’s sleepiness using Visually Evoked Potentials (VEP). VEP computed from EEG signals from the visual cortex. We use the Steady State VEPs (SSVEPs) that are one of the most important EEG signals used in human computer interface systems. SSVEP is a response to visual stimuli presented. We present a classification method to discriminate between...

متن کامل

EEG-based Safety Driving Performance Estimation and Alertness Using Support Vector Machine

Safety driving performance estimation and alertness (SDPEA) has drawn the attention of researchers in preventing traffic accidents caused by drowsiness while driving. Psychophysiological measures, such as electroencephalogram (EEG), are accurately investigated to be robust candidates for drivers’ drowsiness evaluation. This paper presents an effective EEG-based driver drowsiness monitoring syst...

متن کامل

The Mechanical Design of Drowsiness Detection Using Color Based Features

This paper demonstrates design and fabrication o f a mechatronic system for human drowsiness detection. This system can be used in multiple places. For example, in factories, it is used on some dangerous machinery and in cars in order t o prevent the operator o r driver from falling asleep. This system is composed of three parts: (1) mechanical, (2) electrical and (3) image processing system. A...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 1  شماره 

صفحات  -

تاریخ انتشار 2011